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PFRFORMANCE OF CON¥OLUTION CODING CONCATENATED

WITII MFSK MODULATION IN A GAUSSIAN CHANNEL

1. Introduction

In a m-ary frequency-shift-keyed communication link (MFSK) one of the M
messages, xp; (¢ =1,2,3,... M) is transmitted during each T second interval
as a sinusoidal tone at frequency fy. This tone is then modulated onto a carrier
frequency f_ to produce the single transmitted frequency f, + f,. Ideally, at
the receiver the carrier frequency f  is removed and the resulting signal fre-
quency f; isdetectedusing a spectral analysis receiver. In order to reduce the
probability of a bit error and to increase the available bit rate for the same
system parameters (error rate, transmitter power, range etc.) concatenation of
convolution coding with coded MFSK communication link has been proposed. In
this report we shall study the improvement in db due to concatenation over the
conventional m-ary coding. The performance of convolution coded system de-
pends on the channel parameters Rcomp [1] and E (p) [2]. For a discrete

memory less channel with M inputs and J outputs,

J M 1+p
E,(¢) = max | -log, 2 E P al/i+r (1)
{pj} j=1 k=1
where {pj} are the a priori input probabilitiz ;, and
comp = EO\I)“ (2)



It can be shown by random coding arguments that the undetected error

probability using Fano decoding algorithin satisfies the following bounds:

A2-—K Reomp”RN .
; for RN > Rcomp

IN

A2-KP; for RN >R

comp

where A is a constant in the order of unity.

K is the code constraint length. Ry is the code rate in bits per transmitted
waveform. p is the pareto exponent. The pareto exponent o is the solution of

the equation

g = R, (3)

The decoder computational distribution must be known to determine the
necessary buffer size. If ¢ is a random variable equal to the number of de-
coder computations required to decode an information bit, then ¢ has a pareto

distribution, i.e.,
Prob (¢ >L) = BL-” 4)

where B is a constant in the order of unity. It follows from eq. (4) that o must
be greater than 1 for finite average computation. Therefore E (1) = R is

comp

called the computational cut off rate.

A space communication channel can be a..urately modelled on an additive
Gaussian noise channel, Digital data is tr..asmitted over this channel by coding
it into a set of analog waveforms suitable for transmission over the channel. A

demodulator converts the received signal back into digital form. From the point



of view of the encoder and decoder the channel consists of the combination of
the modulator, white Gaussian noise channel, and demodulator. The relative
efficiency of various modulation and demodulation schemes can be compared by

calculating E,/N, necessary for R = R, where E_ is the signal energy

comp
per information bit and N is the one-sided noise spectral density. In this
report the results of calculations for orthogonal modulation with non~coherent

detection and Q-level correlator quantization are presented.

2. Channel Model
It will be assumed that the signal transmitted is one of the M equal energy,

orthogonal signals

sj(t):ej(t) sinwyt, j=1,2,...M (5)

i

—
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T
Jsj(t) S_‘(t)dt :ENSJX’ 6’1 i = (6)
0

Il
o
<
N
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The received signal is

y(t) = e, (t) sin(w,t +6) +n(t) (7)

where ¢ is a random variable uniformly distributed over (0, 27),n(t) is white

Gaussian noise with spectral density N/2.

The maximum likelihood receiver for this non-coherent channel calculates

the M quantities

v, © x2+w?,fori:1,2,,,.M (8)



where

T
]/ 2 .
= y(t) e; (t) sin wy(t)dt 9)
. NoEy JO °
5 T
w, = y(t)e; (t) cos wy(t)dt. (10)
Ve | o

The device that performs these calculations is known as an envelope detector.

The correlator outputs are statistically independent and have probability densities

(yi2 + a2)
fly;/s;)=vy; e 2 I,(ay;) uy;)

= £, () 7 (1)

2

il

f(y;/s;) =v; e *uly)
= f.(y,), for j # i (12)
where
2E _
a = |/ —— , u(-) is the unit step function.

In this study the correlator outputs are quantized to one of the Q levels. The
receiver output is a vector consisting of a list of the M correlator quantum
levels. Therefore the channel has QM possible outputs and M possible inputs.
With this method the optimum output can be approached by increasing fine

quantization.



3. RComp for Unquantized Outputs

R for the exact optimum correlator output case can be found by letting

comp

the quantization become infinitely fine. From eqgs. (1) and (2) it follows that

1
{pi’ i=1

2
© M
Rcomp:max ~-log, [ -_>- P, Vf(Y|si) dy (13)

where Y is the correlator output vector and f(Y] s, ) is the joint density for the
correlator outputs given input s;. For symmetric channels RComp is a maxi-
mum for equally likely inputs, i.e., p; = 1/M for all i. On substituting egs. (11)-

(12) in eq. (13) it follows that
M

® 2
2
1+ M=-1)eu"/2 [J x e~ x2/2 Ié/z (ax)dle
0

vs Ey/N, for M = 2, 4, 8, 16, 32, 64 is plotted in the enclosed figures.

R = log,

comp

R

comp

4. R with Q-Level Quantization

comp
To approximate the exact output case the half line (0, ) can be divided into
a disjoint set of intervals Aj such that U i A ; = (0,®). If the correlator output
yp €2, then the quantized value is taken to be §, = j. Let
P(§j =i/sp) = J foon()dx =P (i)

for ? =j

I

J f (x)x =P (i)
A

i

for £ #j



From eqgs. (1) and (2) it follows that

M

comp = 108} Q ?
1+ M-1) [Z VP, .. (DO P, (i)}

i=1

(14)

For simplicity equal width quantization intervals were chosen. The quan-
tizer input-output relationship is illustrated below, Optimum thresholds were
searched for by trial and error. The optimum thresholds depends on the signal-

to-noise ratio, Therefore, sub optimum thresholds good for a wide range of

signal-to-noise ratios (0-19) were chosen and shown in Table 1. R, - vs Ey/N;
for these thresholds are plotted.
Q _________________
output
T s
T T T s
Q 1 2 3 o A
I
2 | 3.0 }
2 oo !
| 1
3 | 20|40 ! |
1 [ !
| t '
4 | 1.5 | 3.0 | 4.5 ! ! :
] 1 1
Quantizer Thresholds 0 T, T, TQ_1 input

5. Ey(p) vs o with Q-level Quantization.
For symmetric channels equally likely ‘nputs, i.e., p; = 1/M for all i,
maximize the expression for E (o). Usi:g the fact that the correlator outputs

are statistically independent, equation (1) reduces to



M1+P

Q Q M M
Z . E > P(§,/k )1 1+

yo=1 =1 i=1

E0:10g2 oo

using the sub optimum thresholds of Table 1 calculated values of Ey(p) vs £ for

various values of Ey/N, and M are plotted.
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